Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Sci Adv ; 7(37): eabh2434, 2021 Sep 10.
Article in English | MEDLINE | ID: covidwho-1405214

ABSTRACT

Given the evidence for a hyperactive platelet phenotype in COVID-19, we investigated effector cell properties of COVID-19 platelets on endothelial cells (ECs). Integration of EC and platelet RNA sequencing revealed that platelet-released factors in COVID-19 promote an inflammatory hypercoagulable endotheliopathy. We identified S100A8 and S100A9 as transcripts enriched in COVID-19 platelets and were induced by megakaryocyte infection with SARS-CoV-2. Consistent with increased gene expression, the heterodimer protein product of S100A8/A9, myeloid-related protein (MRP) 8/14, was released to a greater extent by platelets from COVID-19 patients relative to controls. We demonstrate that platelet-derived MRP8/14 activates ECs, promotes an inflammatory hypercoagulable phenotype, and is a significant contributor to poor clinical outcomes in COVID-19 patients. Last, we present evidence that targeting platelet P2Y12 represents a promising candidate to reduce proinflammatory platelet-endothelial interactions. Together, these findings demonstrate a previously unappreciated role for platelets and their activation-induced endotheliopathy in COVID-19.

2.
Life Sci Alliance ; 4(11)2021 11.
Article in English | MEDLINE | ID: covidwho-1404295

ABSTRACT

High levels of autoimmune antibodies are observed in COVID-19 patients but their specific contribution to disease severity and clinical manifestations remains poorly understood. We performed a retrospective study of 115 COVID-19 hospitalized patients with different degrees of severity to analyze the generation of autoimmune antibodies to common antigens: a lysate of erythrocytes, the lipid phosphatidylserine (PS) and DNA. High levels of IgG autoantibodies against erythrocyte lysates were observed in a large percentage (up to 36%) of patients. Anti-DNA and anti-PS antibodies determined upon hospital admission correlated strongly with later development of severe disease, showing a positive predictive value of 85.7% and 92.8%, respectively. Patients with positive values for at least one of the two autoantibodies accounted for 24% of total severe cases. Statistical analysis identified strong correlations between anti-DNA antibodies and markers of cell injury, coagulation, neutrophil levels and erythrocyte size. Anti-DNA and anti-PS autoantibodies may play an important role in the pathogenesis of COVID-19 and could be developed as predictive biomarkers for disease severity and specific clinical manifestations.


Subject(s)
Antibodies, Antinuclear/immunology , Autoantibodies/immunology , COVID-19/immunology , COVID-19/metabolism , Adult , Aged , Aged, 80 and over , Antibodies, Antinuclear/blood , Autoantibodies/blood , Biomarkers , DNA/chemistry , DNA/immunology , Erythrocytes/immunology , Female , Humans , Male , Middle Aged , Phosphatidylserines/immunology , Prognosis , Retrospective Studies , SARS-CoV-2/isolation & purification , Severity of Illness Index
5.
J Immunol Methods ; 489: 112909, 2021 02.
Article in English | MEDLINE | ID: covidwho-912357

ABSTRACT

OBJECTIVES: We validate the use of a lateral flow immunoassay (LFI) intended for rapid screening and qualitative detection of anti-SARS-CoV-2 IgM and IgG in serum, plasma, and whole blood, and compare results with ELISA. We also seek to establish the value of LFI testing on blood obtained from a capillary blood sample. METHODS: Samples collected by venous blood draw and finger stick were obtained from patients with SARS-CoV-2 detected by RT-qPCR and control patients. Samples were tested with Biolidics 2019-nCoV IgG/IgM Detection Kit lateral flow immunoassay, and antibody calls were compared with ELISA. RESULTS: Biolidics LFI showed clinical sensitivity of 92% with venous blood at 7 days after PCR diagnosis of SARS-CoV-2. Test specificity was 92% for IgM and 100% for IgG. There was no significant difference in detecting IgM and IgG with Biolidics LFI and ELISA at D0 and D7 (p = 1.00), except for detection of IgM at D7 (p = 0.04). Capillary blood of SARS-CoV-2 patients showed 93% sensitivity for antibody detection. CONCLUSIONS: Clinical performance of Biolidics 2019-nCoV IgG/IgM Detection Kit is comparable to ELISA and was consistent across sample types. This provides an opportunity for decentralized rapid testing and may allow point-of-care and longitudinal self-testing for the presence of anti-SARS-CoV-2 antibodies.


Subject(s)
Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/immunology , Immunologic Tests/standards , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , COVID-19/genetics , Capillaries , Enzyme-Linked Immunosorbent Assay , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Retrospective Studies , Sensitivity and Specificity , Veins
6.
Genome Res ; 30(12): 1781-1788, 2020 12.
Article in English | MEDLINE | ID: covidwho-889658

ABSTRACT

Effective public response to a pandemic relies upon accurate measurement of the extent and dynamics of an outbreak. Viral genome sequencing has emerged as a powerful approach to link seemingly unrelated cases, and large-scale sequencing surveillance can inform on critical epidemiological parameters. Here, we report the analysis of 864 SARS-CoV-2 sequences from cases in the New York City metropolitan area during the COVID-19 outbreak in spring 2020. The majority of cases had no recent travel history or known exposure, and genetically linked cases were spread throughout the region. Comparison to global viral sequences showed that early transmission was most linked to cases from Europe. Our data are consistent with numerous seeds from multiple sources and a prolonged period of unrecognized community spreading. This work highlights the complementary role of genomic surveillance in addition to traditional epidemiological indicators.


Subject(s)
COVID-19 , Genome, Viral , Pandemics , Phylogeny , SARS-CoV-2/genetics , Whole Genome Sequencing , COVID-19/epidemiology , COVID-19/genetics , COVID-19/transmission , Female , Humans , Male , New York City
7.
medRxiv ; 2020 Aug 19.
Article in English | MEDLINE | ID: covidwho-828498

ABSTRACT

Effective public response to a pandemic relies upon accurate measurement of the extent and dynamics of an outbreak. Viral genome sequencing has emerged as a powerful approach to link seemingly unrelated cases, and large-scale sequencing surveillance can inform on critical epidemiological parameters. Here, we report the analysis of 864 SARS-CoV-2 sequences from cases in the New York City metropolitan area during the COVID-19 outbreak in Spring 2020. The majority of cases had no recent travel history or known exposure, and genetically linked cases were spread throughout the region. Comparison to global viral sequences showed that early transmission was most linked to cases from Europe. Our data are consistent with numerous seeds from multiple sources and a prolonged period of unrecognized community spreading. This work highlights the complementary role of genomic surveillance in addition to traditional epidemiological indicators.

9.
Am J Pathol ; 190(9): 1881-1887, 2020 09.
Article in English | MEDLINE | ID: covidwho-726391

ABSTRACT

The dynamics of viral load (VL) of the severe acute respiratory syndrome coronavirus 2 and its association with different clinical parameters remain poorly characterized in the US patient population. Herein, we investigate associations between VL and parameters, such as severity of symptoms, disposition (admission versus direct discharge), length of hospitalization, admission to the intensive care unit, length of oxygen support, and overall survival in 205 patients from a tertiary care center in New York City. VL was determined using quantitative PCR and log10 transformed for normalization. Associations were tested with univariate and multivariate regression models. Diagnostic VL was significantly lower in hospitalized patients than in patients not hospitalized (log10 VL = 3.3 versus 4.0; P = 0.018) after adjusting for age, sex, race, body mass index, and comorbidities. Higher VL was associated with shorter duration of the symptoms in all patients and hospitalized patients only and shorter hospital stay (coefficient = -2.02, -2.61, and -2.18; P < 0.001, P = 0.002, and P = 0.013, respectively). No significant association was noted between VL, admission to intensive care unit, length of oxygen support, and overall survival. Our findings suggest a higher shedding risk in less symptomatic patients, an important consideration for containment strategies. Furthermore, we identify a novel association between VL and history of cancer. Larger studies are warranted to validate our findings.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/epidemiology , Coronavirus Infections/therapy , Pneumonia, Viral/epidemiology , Pneumonia, Viral/therapy , Viral Load , Adult , COVID-19 , Female , Hospitalization/statistics & numerical data , Humans , Male , Middle Aged , New York City/epidemiology , Pandemics , Risk Factors , SARS-CoV-2
10.
Am J Pathol ; 2020 Jul 07.
Article in English | MEDLINE | ID: covidwho-654976

ABSTRACT

The Publisher regrets that this article is an accidental duplication of an article that has already been published, https://doi.org/10.1016/j.ajpath.2020.07.001. The duplicate article has therefore been withdrawn. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.

11.
J Transl Med ; 18(1): 219, 2020 06 01.
Article in English | MEDLINE | ID: covidwho-459001

ABSTRACT

The outbreak of the novel coronavirus disease 2019 (COVID-19) and consequent social distancing practices have disrupted essential clinical research functions worldwide. Ironically, this coincides with an immediate need for research to comprehend the biology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the pathology of COVID-19. As the global crisis has already led to over 15,000 deaths out of 175,000 confirmed cases in New York City and Nassau County, NY alone, it is increasingly urgent to collect patient biospecimens linked to active clinical follow up. However, building a COVID-19 biorepository amidst the active pandemic is a complex and delicate task. To help facilitate rapid, robust, and regulated research on this novel virus, we report on the successful model implemented by New York University Langone Health (NYULH) within days of outbreak in the most challenging hot spot of infection globally. Using an amended institutional biobanking protocol, these efforts led to accrual of 11,120 patients presenting for SARS-CoV-2 testing, 4267 (38.4%) of whom tested positive for COVID-19. The recently reported genomic characterization of SARS-CoV-2 in the New York City Region, which is a crucial development in tracing sources of infection and asymptomatic spread of the novel virus, is the first outcome of this effort. While this growing resource actively supports studies of the New York outbreak in real time, a worldwide effort is necessary to build a collective arsenal of research tools to deal with the global crisis now, and to exploit the virus's biology for translational innovation that outlasts humanity's current dilemma.


Subject(s)
Betacoronavirus/physiology , Biological Specimen Banks , Biomedical Research , Coronavirus Infections/epidemiology , Pandemics , Pneumonia, Viral/epidemiology , COVID-19 , Databases as Topic , Humans , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL